Intersection homology Künneth theorems

نویسنده

  • Greg Friedman
چکیده

Cohen, Goresky and Ji showed that there is a Künneth theorem relating the intersection homology groups I H∗(X × Y ) to I H∗(X) and I H∗(Y ), provided that the perversity p̄ satisfies rather strict conditions. We consider biperversities and prove that there is a Künneth theorem relating I H∗(X × Y ) to I H∗(X) and I H∗(Y ) for all choices of p̄ and q̄. Furthermore, we prove that the Künneth theorem still holds when the biperversity p, q is “loosened” a little, and using this we recover the Künneth theorem of Cohen-Goresky-Ji.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Künneth Formula in Floer Homology for Manifolds with Restricted Contact Type Boundary

We prove the Künneth formula in Floer (co)homology for manifolds with restricted contact type boundary. We use Viterbo’s definition of Floer homology, involving the symplectic completion by adding a positive cone over the boundary. The Künneth formula implies the vanishing of Floer (co)homology for subcritical Stein manifolds. Other applications include the Weinstein conjecture in certain produ...

متن کامل

The Symplectic Thom Conjecture

In this paper, we demonstrate a relation among Seiberg-Witten invariants which arises from embedded surfaces in four-manifolds whose self-intersection number is negative. These relations, together with Taubes’ basic theorems on the Seiberg-Witten invariants of symplectic manifolds, are then used to prove the Symplectic Thom Conjecture: a symplectic surface in a symplectic four-manifold is genus...

متن کامل

The symplectic Thom conjecture

In this paper, we demonstrate a relation among Seiberg-Witten invariants which arises from embedded surfaces in four-manifolds whose self-intersection number is negative. These relations, together with Taubes’ basic theorems on the Seiberg-Witten invariants of symplectic manifolds, are then used to prove the symplectic Thom conjecture: a symplectic surface in a symplectic fourmanifold is genus-...

متن کامل

K-theoretic Invariants for Floer Homology

This paper defines two K-theoretic invariants, Wh1 and Wh2, for individual and one-parameter families of Floer chain complexes. The chain complexes are generated by intersection points of two Lagrangian submanifolds of a symplectic manifold, and the boundary maps are determined by holomorphic curves connecting pairs of intersection points. The paper proves that Wh1 and Wh2 do not depend on the ...

متن کامل

Chow-künneth Decomposition for Universal Families over Picard Modular Surfaces

We discuss conditions for the existence of an absolute ChowKünneth decomposition for complete degenerations of families of Abelian threefolds with complex multiplication over a particular Picard Modular Surface studied by Holzapfel. In addition to the work of Gordon, Hanamura and Murre we use Relatively Complete Models in the sense of Mumford-Faltings-Chai of Picard Modular Surfaces in order to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008